NRXN1 deletions identified by array comparative genome hybridisation in a clinical case series – further understanding of the relevance of NRXN1 to neurodevelopmental disorders

نویسندگان

  • Sarah Curran
  • Joo Wook Ahn
  • Hannah Grayton
  • David A Collier
  • Caroline Mackie Ogilvie
چکیده

BACKGROUND Microdeletions in the NRXN1 gene have been associated with a range of neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, speech and language delay, epilepsy and hypotonia. RESULTS In the present study we performed array CGH analysis on 10,397 individuals referred for diagnostic cytogenetic analysis, using a custom oligonucleotide array, which included 215 NRXN1 probes (median spacing 4.9 kb). We found 34 NRXN1 deletions (0.33% of referrals) ranging from 9 to 942 kb in size, of which 18 were exonic (0.17%). Three deletions affected exons also in the beta isoform of NRXN1. No duplications were found. Patients had a range of phenotypes including developmental delay, learning difficulties, attention deficit hyperactivity disorder (ADHD), autism, speech delay, social communication difficulties, epilepsy, behaviour problems and microcephaly. Five patients who had deletions in NRXN1 had a second CNV implicated in neurodevelopmental disorder: a CNTNAP2 and CSMD3 deletion in patients with exonic NRXN1 deletions, and a Williams-Beuren syndrome deletion and two 22q11.2 duplications in patients with intronic NRXN1 deletions. CONCLUSIONS Exonic deletions in the NRXN1 gene, predominantly affecting the alpha isoform, were found in patients with a range of neurodevelopmental disorders referred for diagnostic cytogenetic analysis. The targeting of dense oligonucleotide probes to the NRXN1 locus on array comparative hybridisation platforms provides detailed characterisation of deletions in this gene, and is likely to add to understanding of the importance of NRXN1 in neural development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Impacts of NRXN1 Knockdown on Neurodevelopment in Stem Cell Models

Exonic deletions in NRXN1 have been associated with several neurodevelopmental disorders, including autism, schizophrenia and developmental delay. However, the molecular mechanism by which NRXN1 deletions impact neurodevelopment remains unclear. Here we used human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) as models to investigate the functional impacts of NR...

متن کامل

Investigation of NRXN1 deletions: clinical and molecular characterization.

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization. To more firmly establish the full ph...

متن کامل

Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.

Copy number variations (CNVs) account for a substantial proportion of human genomic variation, and have been shown to cause neurodevelopmental disorders. We sought to determine the relevance of CNVs to the aetiology of schizophrenia (SZ). Whole-genome, high-resolution, tiling path BAC array comparative genomic hybridization (array CGH) was employed to test DNA from 93 individuals with DSM-IV SZ...

متن کامل

Deletions of NRXN1 (Neurexin-1) Predispose to a Wide Spectrum of Developmental Disorders

Research has implicated mutations in the gene for neurexin-1 (NRXN1) in a variety of conditions including autism, schizophrenia, and nicotine dependence. To our knowledge, there have been no published reports describing the breadth of the phenotype associated with mutations in NRXN1. We present a medical record review of subjects with deletions involving exonic sequences of NRXN1. We ascertaine...

متن کامل

Applications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders

Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013